

Characterization of carotenoids and fatty acids in Costa Rican Acrocomia aculeata palm fruits

<u>Steingass CB</u>, Schex R, Lieb VM, Jiménez VM, Esquivel P, Schweiggert RM, Carle R

FSC Regional Seminar 2017 in Latin America San José, December 5, 2017

Introduction

Vitamin A deficiency (VAD)

Vitamin A deficiency (VAD)

- Global dietary problem
- WHO (2009): 190 million affected pre-school children

Functions of vitamin A

- Vision (rhodopsin)
- Growth and development
- Immune defense
- Reproduction

Consequences vitamin A deficit

- Increased morbidity and mortality (infections)
- Xerophthalmia, night blindness

\rightarrow Plant sources of vitamin A

Vitamin A deficiency 1995-2005: Moderate to severe health problem in **122 countries** (WHO, 2009)

Introduction

Palm oil: current situation

- World production 2016: 62–65 Mio. tonnes
- South East Asia: African oil palm (Elaeis guineensis Jacq.)

Drawbacks palm oil (examples)

- Deforestation (South East Asia)
- Extensive monocultures (*E. guineensis*)
- Susceptible for phytopathogens (pesticides!)

⇒ Diversification of monocultures

Alternative fat sources

UNIVERSITY OF HOHENHEIM

Advantages palm oil

- Broad range of applications (food, feed, cosmetics)
- High fat yields (50–70% dry matter)
- High melting point (~36 °C)
- Lipid fractions: kernel fat, mesocarp oil, carotenoids (E160a)
- Red palm oil: "functional food": squalene, vitamin E, carotenoids

Acrocomia sp. (Arecaceae)

Macáuba/Coyol (Acrocomia aculeata (Jacq.) Lodd. ex Mart.)

- Origin: Central and South America
- Tropical and temperate zones: silvopastoral cultivation
- Harvest yield: ~40 t/ha (Elaeis sp. ~35 t/ha)

UNIVERSITY OF HOHENHEIM

Method development: Acrocomia aculeata

Isolation: carotenes, xanthophylls & tocochromanols

1. Freeze-dried mesocarp

 \int + CaCO₃

- 2. Extraction: acetone (3×) ∫
- 3. Saponification: 2 mL 20% KOH (in MeOH)
 + 2 mL diethylether
 - + 0.2 mL 20% ascorbic acid solution
 - Stirring 3h, room Temp.
- 4. Washing and LLE: diethylether
- 5. Evaporation to dryness
- 6. Dissolution in MeOH/MTBE 1/1 v/v

HPLC analysis

	System 2: Acrocomia
Column (C30)	250×4.6 mm i.d., 3 μm
Eluent A	80:18:2 MeOH/ <i>t</i> BME/H ₂ O
Eluent B	8:90:2 MeOH/ <i>t</i> BME/H ₂ O
Column Temp.	23 °C
Flow rate	0.6 mL/min
Injection volume	10 µL
Total run time	45 min

Recoveries

violaxanthin 90% lutein 98% β-carotene 95% α-tocopherol 91%

Identification criteria

- ✓ Mass spectrum (at least: molecular ion)
- ✓ Chromatographic behaviour (t_R)
- ✓ UV/vis absorption spectrum

Mass spectrometry

Background: TAGs etc. \rightarrow **saponification**

Tocochromanols: ESI(-)

• Auto-MSⁿ

 \rightarrow ESI(-): [M-H]⁻

Carotenoids: APCI alternating polarity

- Auto-MS mode: MS1 spectra
 → APCI(-): [M]^{•-}
- $\rightarrow APCI(+): [M+H]^+$
- MS/MS experiments
 → APCI(+): indicative mass fragments

Tocochromanols: Acrocomia aculeata

Xanthophylls: Acrocomia aculeata

Xanthophylls: Acrocomia aculeata

UNIVERSITY OF HOHENHEIM

UNIVERSITY OF HOHENHEIM

Carotenes: Acrocomia aculeata

UNIVERSITY OF HOHENHEIM

Carotenes: Acrocomia aculeata

UNIVERSITY OF HOHENHEIM

Acrocomia aculeata: α-tocopherol and 25 carotenoids

HPLC-DAD-FLD: selective detection

- DAD: carotenoids (vis absorption)
- FLD: tocochromanols (fluorescence)
- \rightarrow No interference
- → Simultaneous quantitation

HPLC-DAD profiling

Carotenoid profiles: Acrocomia aculeata pulp (µg/100 g fresh weight)

Mesocarp	Maturity A Maturity B		Maturity C
Xanthophylls			
Violaxanthin isomer	15 ± 16a	10 ± 5a	14 ± 3a
(all- <i>E</i>)-Violaxanthin	23 ± 15b	100 ± 91ab	168 ± 46a
(all- <i>E</i>)-Neoxanthin	18 ± 11a	22 ± 10a	25 ± 6a
(all- <i>E</i>)-Luteoxanthin	1 ± 2b	5 ± 6ab	11 ± 6a
(all- <i>E</i>)-Antheraxanthin	7 ± 5b	24 ± 13b	109 ± 50a
(13 <i>Z</i>)-Lutein	11 ± 3b	19 ± 9ab	26 ± 4a
(all- <i>E</i>)-Lutein	120 ± 95a	81 ± 51a	62 ± 23a
(13Z)-Zeaxanthin	tr.	1 ± 1b	10 ± 6a
(all- <i>E</i>)-Zeaxanthin	5 ± 2b	14 ± 5a	57 ± 29a
(9 <i>Z</i>)-Lutein	1 ± 1b	tr.	12 ± 6a
Carotenes			
(13Z)-β-Carotene	tr.	tr.	4 ± 5
(all- <i>E</i>)-β-Carotene	7 ± 4b	12 ± 7b	41 ± 18a
(9 <i>Z</i>)-β-Carotene	0 ± 1a	n.d.	2 ± 3a
Precursors			
Phytofluene 2	tr.	22 ± 18b	60 ± 6a
Phytofluene 5	n.d.	4 ± 8b	23 ± 3a
Phytoene 1	n.d.	5 ± 9a	20 ± 15a
Phytoene 2	1 ± 2c	71 ± 59b	228 ± 25a

Maturation:

 Xanthophyll cycle pigments (Vx, Ax, Zx)

• β-Carotene

[•] Precursors (Pf, Pe)

HPLC-DAD profiling

UNIVERSITY OF HOHENHEIM

Carotenoid profiles: Acrocomia aculeata maturity stages (peel, pulp)

Schex et al., Food Res. Int. DOI 10.1016/j.foodres.2017.11.041

HPLC-DAD profiling

UNIVERSITY OF HOHENHEIM

Carotenoid profiles: Acrocomia aculeata from different provenances

• Preliminary results

- ✓ Different chemotypes
- → Xanthophyll type
- $\rightarrow \beta$ -Carotene type
- \rightarrow Others?
- ✓ Broad natural diversity
- \rightarrow Qualitative composition
- \rightarrow Absolute concentrations
- ✓ Further studies needed

16

Identification criteria Mass spectrum Chromatographic behaviour (linear retention index, LRI)

Reference standards \checkmark

 \checkmark

 \checkmark

55

Identification: GC-ITMS

 $t_{\rm R} = 14.5 \, {\rm min}$ 100-41 [M-32]*+ 50-264 [M]**•**+ \cap 296 278 278 296 193 207 235 222 50vaccenic acid 100-(18:1n7) 80 100 120 140 160 180 200 220 240 260 280 300 320 340 60 m/z

GC-ITMS mass spectrum: FAME with t_{R} = 14.5 min vs. vaccenic acid methyl ester (inhouse database)

GC-ITMS TIC chromatograms: Acrocomia mesocarp oil, FAME mix, and vaccenic acid methyl ester (Column: SLB IL82. Total run time: 32 min)

Fatty acid profiles: Acrocomia aculeata mesocarp oil

		Maturity A	Maturity B	Maturity C	Min	Max
Total lipids (% DM))	9.6 ± 5.7b	20.9 ± 3.4a	22.2 ± 5.2a	3.3	27.1
Total lipids (% FW))	2.6 ± 1.7b	8.3 ± 2.0a	10.3 ± 2.7a	0.7	13.2
Fatty acid compos	ition (%)					
Palmitic acid	C16:0	16.9 ± 0.8a	18.1 ± 1.8a	18.7 ± 1.6a	16.3	20.1
Palmitoleic acid	C16:1n7	1.7 ± 0.6a	3.9 ± 1.7a	4.3 ± 1.5a	0.9	6.2
Stearic acid	C18:0	3.6 ± 0.6a	1.9 ± 0.4b	1.8 ± 0.5b	1.3	4.5
Oleic acid	C18:1n9	65.0 ± 5.8a	67.1 ± 4.4a	65.5 ± 3.7a	57.0	71.4
Vaccenic acid	C18:1n7	$2.0 \pm 0.5b$	3.7 ± 0.7a	4.1 ± 0.7a	1.3	4.8
Linoleic acid	C18:2n6	5.9 ± 3.5a	3.0 ± 1.1a	3.1 ± 0.8a	1.9	10.3
α-Linolenic acid	C18:3n3	3.8 ± 2.6a	1.5 ± 0.3a	1.4 ± 0.3a	1.2	7.4
Others ^a		1.3 ± 0.6a	0.7 ± 0.1a	0.9 ± 0.3a	0.6	2.2
SFA (% of total fatt	ty acids)	21.5 ± 1.1a	20.5 ± 1.4a	21.2 ± 1.0a	18.9	22.9
MUFA (% of total fa	atty acids)	68.9 ± 6.8a	75.0 ± 2.1a	74.2 ± 1.8a	59.4	77.3
PUFA (% of total fa	atty acids)	9.6 ± 6.0a	4.5 ± 1.3a	4.5 ± 1.1a	3.1	17.7
SFA/UFA		0.3 ± 0.0a	0.3 ± 0.0a	0.3 ± 0.0a	0.2	0.3

GC-FID profiling

Fatty acid profiles: Acrocomia aculeata kernel fat

		Maturity A	Maturity B	Maturity C	Min	Max
Total lipids (% DM))	55.5 ± 1.9a	53.4 ± 2.2a	53.5 ± 2.6a	50.3	57.4
Total lipids (% FW))	44.6 ± 0.7a	43.3 ± 2.3a	44.1 ± 2.6a	40.5	47.1
Fatty acid compos	ition (%)					
Caprylic acid	C8:0	5.2 ± 0.5a	5.0 ± 0.3a	4.9 ± 0.4a	4.4	5.6
Capric acid	C10:0	3.3 ± 0.2a	3.2 ± 0.1a	3.1 ± 0.2a	2.9	3.5
Lauric acid	C12:0	43.3 ± 1.1a	42.5 ± 0.7ab	41.5 ± 0.6b	40.8	44.5
Myristic acid	C14:0	13.4 ± 0.3a	13.5 ± 0.4a	13.4 ± 0.5a	12.9	14.1
Palmitic acid	C16:0	8.8 ± 0.5a	9.0 ± 0.2a	9.2 ± 0.4a	8.2	9.7
Stearic acid	C18:0	3.2 ± 0.2a	3.2 ± 0.4a	3.1 ± 0.3a	2.7	3.6
Oleic acid	C18:1n9	18.6 ± 1.1a	19.5 ± 1.7a	20.5 ± 0.8a	17.5	21.8
Linoleic acid	C18:2n6	3.0 ± 0.2a	3.0 ± 0.2a	3.2 ± 0.1a	2.7	3.3
Others ^a		1.2 ± 0.0a	1.1 ± 0.1a	1.1 ± 0.1a	1.1	1.2
SFA (% of total fat	ty acids)	78.0 ± 1.2a	77.0 ± 1.8a	75.9 ± 0.8a	74.6	78.9
MUFA (% of total fatty acids)		19.0 ± 1.2a	19.9 ± 1.7a	21.0 ± 0.8a	17.9	22.2
PUFA (% of total fa	atty acids)	3.0 ± 0.2a	3.1 ± 0.2a	3.2 ± 0.1a	2.8	3.3

GC-FID profiling

Fatty acid profiles: Acrocomia aculeata vs. Elaeis sp.

GC-ITMS TIC chromatograms of FAMES from *E. guineensis* (left) and *A. aculeata* (right) mesocarp oil and kernel fat, respectively.

Mesocarp	A. aculeata ¹ I	E. guineensis ²	E. oleifera ²	<i>Eo</i> × <i>Eg</i> hybrids²
SFA [%]	15.7–31.0	54.2–54.6	22.3–31.5	42.4–49.1
MUFA [%]	55.1–77.0	34.4–35.4	47.5–66.1	39.8–44.5
PUFA [%]	4.2–14.0	10.4–11.0	5.2–22.5	11.1–13.1

Kernel	A. aculeata ¹	E. guineensis ²	E. oleifera ²	<i>Eo</i> × <i>Eg</i> hybrids²
SFA [%]	66.8–76.7	84.9–86.0	68.5–79.1	75.9–78.2
MUFA [%]	20.2–30.0	11.7–13.0	16.0–26.0	17.5–19.3
PUFA [%]	2.9–4.2	2.2–2.3	4.1–5.0	4.4–4.7

¹Samples from Costa Rica (GIE) and Paraguay: unpublished results ²Samples from Costa Rica (ASD): Lieb *et al.*, *J. Agric. Food Chem.* 2017 65(18) 3617

Acrocomia: a promising substitute for *Elaeis* palms

Forthcomings

Alternative lipid sources

- Macáuba/Coyol (Acrocomia aculeata)
- ✓ Triglyceride and melting profiles
- ✓ Technology: fractionation (olein/stearin)
- Mango (Mangifera indica L.) kernel fat
- ✓ Fatty acid and triglyceride profiles
- ✓ Technological properties

HPLC-DAD-ESI-MSⁿ

Elutents: Acetonitrile (1), 2-Propanol (2) Columns: C_{18} (two 250 × 4.6 mm, 5 µm particle size) Run time: 120 min (32 TAGs assigned)

UNIVERSITY OF HOHENHEIM

Summary & conclusion

• Optimized HPLC-DAD-FLD method

- ✓ Simultaneous extraction and analysis: >25 lipophilic antioxidants
- ✓ C30: resolution tocochromanols/geometrical carotenoid isomers within 45 min
- \rightarrow A. aculeata: α -tocopherol/complex carotenoid profile

• Optimized GC method

- ✓ SLB IL82: chromatographic resolution >38 FAMEs (C4 to C24) within 32 min
- \rightarrow High-throughput screening of fatty acids

Conclusion: Acrocomia aculeata

- ✓ Interesting nutritional source of provitamin A and vitamin E
- ✓ Carotenoid fractions: valuable by-products (E 160a)
- ✓ Mesocarp/kernel fatty acids resemble those of *Elaeis* sp.
- → Acrocomia aculeata: promising, sustainable oil crop

• Future studies

- ✓ Lipid profiling: Macáuba/Coyol from different provenances
- → Natural diversity of Acrocomia

Thank you for your attention!

GC-FID profiling

UNIVERSITY OF HOHENHEIM

Fatty acid profiles: Acrocomia aculeata maturity stages

1. Introduction

- → African oil palm: nutritional value and current situation
- → Substitutes: American oil palm, interspecific *Elaeis* hybrids, Macáuba palm

2. Identification: HPLC-DAD-APCI/ESI-MSⁿ

- \rightarrow MSⁿ experiments
- \rightarrow Isomerisation of reference standards

3. Quantitation: HPLC-DAD/FLD

 \rightarrow Carotenoid and to cochromanol profiles

4. Summary and conclusions

Elaeis species

UNIVERSITĂT HOHENHEIM

African oil palm (*E. guineensis* Jaqc.)

- Origin: subtropical and tropical Africa (Guinean Coast)
- Introduced to Malaysia and Indonesia as an ornamental plant in 1884
- Leading source for vegetable oil
- Production: industrial scale

American oil palm (E. oleifera [Kunth] Cortés)

- Origin: tropical Central and South America
- Production: small to medium sized plantations

Hybrids (*E. guineensis* × *E. oleifera*)

E. guineensis

E. oleifera × E. guineensis

Diversification of monocultures

Aims & scopes

Aims & scopes

- Simultaneous extraction and analysis of tocochromanols and carotenoids
- Compound identification by HPLC-DAD-APCI/ESI-MSⁿ in lipid-rich matrices

Samples Elaeis sp. (ASD Costa Rica)

- American oil palm (*E. oleifera*)
- African oil palm (E. guineensis)
- Interspecific hybrids

- Costa Rica: Green Integrated Energies
- Paraguay: Dr. Hilger (University of Hohenheim)

UNIVERSITY OF HOHENHEIM

Elaeis samples

CA/Col 03 (Costa Rica/Panama/Colombia) E. oleifera

Taisha 04 (Ecuador)

Surinam 79 (Suriname)

E. oleifera Tanzania 06 (Tanzania)

E. oleifera

E. guineensis

E. guineensis

Deli Dami 08 (Papua New Guinea)

Manaos 03 (Brazil)

E. oleifera

Compact 97

back-cross of hybrid

Manaos 79 (Brazil)

E. oleifera

Photographs and Figure taken from MSc-thesis Kerfers, 2016

28

Method development: *Elaeis* sp.

Isolation: tocochromanols & carotenes

1. Freeze-dried mesocarp*

 $\int + CaCO_3$

2. Extraction: MeOH/EAc/LP (3×), LP (2×)

3. Saponification: 4 mL 10% KOH (in MeOH) + 40 mg ascorbic acid

 \int Stirring 3 h, room Temp.

- 4. Washing and LLE: hexane/EAc 85/15 v/v
- 5. Evaporation to dryness
- 6. Dissolution in MeOH/tBME 1/1 v/v

* Autoclaved mimicking industrial practice: 70 min, 140 °C Inactivation of endogeneous lipases/microorganisms

HPLC analysis

	System 1: <i>Elaeis</i>
Column (C30)	250×4.6 mm i.d., 3 µm
Eluent A	91:5:4 MeOH/ <i>t</i> BME/H ₂ O
Eluent B	8:90:2 MeOH/ <i>t</i> BME/H ₂ O
Column Temp.	23 °C
Flow rate	0.42 mL/min
Injection volume	10 μL
Total run time	55 min

UNIVERSITY OF HOHENHEIM

Recoveries

 β -carotene 101% α -tocopherol 95%

HPLC-DAD-FLD: *Elaeis* sp.

APCI-MSⁿ: MS1 experiments *Elaeis* sp.

MS1 TIC oil palm (*Elaeis* sp.)

APCI-MSⁿ: MS1 experiments *Elaeis* sp.

MS1 EIC oil palm (*Elaeis* sp.)

Intens

-MS, 30.3min (#1050), Background Subtracted

791.8

m/z

m/z

APCI-MSⁿ: MS/MS fragmentations *Elaeis* sp.

MS/MS oil palm (Elaeis sp.)

[M+H]⁺ *m/z* 537

UNIVERSITY OF HOHENHEIM

UNIVERSITY OF HOHENHEIM

Isomerisation of reference standards: *Elaeis* sp.

UV/Vis spectra

- VIS-maxima: D_{II} and D_{III}
- UV-maxima: D_B (near UV-maxima, "*cis*-peak") and short wavelength maxima
- Intensity ratio \overline{A}_{B}/A_{II} and A_{III}/A_{II}

Isomerisation of reference standards: *Elaeis* sp.

UV/Vis spectra: literature data

- NMR spectroscopy (geometrical isomers)
- Elution order C₃₀ stationary phase

Emenhiser *et al.,* J. Chromatogr. A 1996 719(2) 333

550

HPLC-DAD-FLD profiling

UNIVERSITY OF HOHENHEIM

Carotenoid profiles: *Elaeis* sp.

PCA: total carotenoids (μ g/g oil) and relative contribution of individual pigments (%)

- ✓ Similar qualitative carotenoid composition (exception: Tanzania)
- ✓ Differing total concentrations (236-3,527 μ g/g oil)
- ✓ Mean retinol activity equivalents (RAE): ~60 µg RAE/g oil (data not shown)
- Recommended dietary allowance (RDA): ~800 µg RAE/d → ~13 g palm oil

HPLC-DAD-FLD profiling

Carotenoid profiles: Elaeis sp.

	E. oleifera					E. guir	neensis	Hyl	brid	All	
	CA/Col 03	Taisha 04	Surinam 79	Manaos 03	Manaos 79	Manaos/Taisha 12	Deli Dami 08	Tanzania 06	Compact 97	Amazon 12	Minmax.
Total β-car. ^a	1308 ± 42c	569 ± 19e	2324 ± 0a	505 ± 21ef	1799 ± 150b) 188 ± 21g	251 ± 24g	325 ± 71fg	222 ± 82g	896 ± 10d	164-2324
Total α-car. ^a	601 ± 25b	172 ± 1ef	1084 ± 23a	157 ± 13ef	572 ± 46bc	52 ± 6f	65 ± 9f	299 ± 98de	105 ± 34f	438 ± 23cd	48-1100
Others ^a	53 ± 5b	35 ± 3c	101 ± 4a	23 ± 1cd	67 ± 5b	15 ± 0d	16 ± 1d	28 ± 9cd	15 ± 1d	30 ± 2cd	14-104
Total car. ^a	1961 ± 73c	776 ± 15e	3509 ± 26a	686 ± 35ef	2439 ± 201b	254 ± 27g	332 ± 32fg	652 ± 178ef	342 ± 118fg	1364 ± 31d	236-3527
RAE ^{ab}	96 ± 2c	40 ± 1e	172 ± 1a	36 ± 2ef	126 ± 10b	14 ± 1g	19 ± 2fg	29 ± 7efg	17 ± 7fg	67 ± 1d	12-173
Isomers (%)	49 ± 2a	44 ± 1ab	48 ± 1ab	47 ± 1ab	48 ± 0ab	40 ± 1bc	34 ± 1c	45 ± 1ab	41 ± 6abc	48 ± 0ab	33-50

^aConcentrations in (µg/g oil)

^b Retinoic acid equivalents (RAE) calculated according to the Institute of Medicine (1 μ g β -carotene = 1 μ g retinol)

Total carotenoids

- α and β -carotenes: 94–98% (β -carotene > α -carotene. Exception: Tanzania 06)
- Broad intra- and interspecific variance
- E. oleifera (Surinam, Ca/Col, Manaos 79) and backcross hybrid Amazon 12

Mean retinol activity equivalents (RAE): ~60 µg RAE/g oil (Institute of Medicine, 2001)

- 5-fold higher than carrots (leafy vegetables: 19-fold, tomatoes: 121-fold)
- Recommended dietary allowance (RDA) of ~800 μ g RAE/d \rightarrow ~13 g palm oil

HPLC-DAD-FLD profiling

UNIVERSITY OF HOHENHEIM

Tocochromanol profiles: *Elaeis* sp.

PCA: total tocochromanols (μ g/g oil) and relative contribution of individual compounds (%)

• Tocochromanol profiles

- ✓ β-/γ-tocotrienol (52–83%): *E. oleifera* and hybrids
- α-tocochromanol homologues (52–65%): E. guineensis

Why is proper chromatographic separation such an important issue ?

- Optimized chromatographic separation (peak resolution α)
- ✓ Clear UV/VIS and mass spectral information: compound assignment

retinoic acio

- ✓ Proper peak integration: quantitation
- Provitamin A estimation (RAE): β-ring

retinal

- - Geometrical isomers: e.g., efficiency of β-carotene conversion into vitamin A:
 53 and 38% for (13Z)- and (9Z)-isomers, respectively (Zechmeister, 1962)

FRSITY OF HOHENHEIM

Provitamin A activity

Table 3.2: Relative activities (%) of selectedprovitamin A carotenoids

Provitamin	Relative activity (%)
(all- <i>E</i>)-β-carotene	100 ^a
(13 <i>Z</i>)-β-carotene	53 ^b
(<i>Z</i>)-β-carotene	38 ^b
(all- <i>E</i>)-α-carotene	50-54 ^a
(<i>Z</i>)-α-carotene (13Z?)	16 ^b
(<i>Z</i>)-α-carotene (9Z?)	13 ^b
<u>(Z)-γ-carotene*</u>	19 ^b

^a relative activities taken from Bauernfeind (1972)

^b relative activities taken from Zechmeister (1949)

 * used for calculation of $\gamma\text{-carotene}$ isomers

Lipophilic antioxidants in palm fruits

	Elaeis sp.	Acrocomia aculeata (Costa Rica)
Detected compounds	<i>n</i> = 26	<i>n</i> = 26
Carotenes	α- and β-carotene	phytoene, phytofluene, β-carotene
Xanthophylls	n.d.	antheraxanthin, <u>β-cryptoxanthin,</u> lutein, luteoxanthin, neoxanthin, violaxanthin, zeaxanthin
Tocochromanols	δ-tocotrienol, β-/γ-tocotrienol, α-tocotrienol, α-tocoenol, α- tocopherol ($n = 6$)	α -tocopherol ($n = 1$)